Does the Propagation of Artifact Changes across Tasks reflect
Work Dependencies?

Christoph Mayr-Dorn
Johannes Kepler University
Linz, Austria
christoph.mayr-dorn@jku.at

ABSTRACT

Developers commonly define tasks to help coordinate software de-
velopment efforts—whether they be feature implementation, refac-
toring, or bug fixes. Developers establish links between tasks to ex-
press implicit dependencies that needs explicit handling—dependen-
cies that often require the developers responsible for a given task
to assess how changes in a linked task affect their own work and
vice versa (i.e., change propagation). While seemingly useful, it is
unknown if change propagation indeed coincides with task links.
No study has investigated to what extent change propagation
actually occurs between task pairs and whether it is able to serve
as a metric for characterizing the underlying task dependency. In
this paper, we study the temporal relationship between developer
reading and changing of source code in relationship to task links.
We identify seven situations that explain the varying correlation
of change propagation with linked task pairs and find six motifs
describing when change propagation occurs between non-linked
task pairs. Our paper demonstrates that task links are indeed useful
for recommending which artifacts to monitor for changes, which
developers to involve in a task, or which tasks to inspect.

CCS CONCEPTS

« Software and its engineering — Software evolution;

KEYWORDS

task links, change propagation, bugzilla, mylyn, empirical study
ACM Reference Format:

Christoph Mayr-Dorn and Alexander Egyed. 2018. Does the Propagation
of Artifact Changes across Tasks reflect Work Dependencies?. In ICSE ’18:
ICSE ’18: 40th International Conference on Software Engineering , May 27-
June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3180155.3180185

1 INTRODUCTION

A task in software engineering defines a work item—usually for
feature implementation, refactoring, or bug fixes.! Often, tasks
are broken down into subtasks that can be solved by individuals.

I Throughout this paper we use the term task to represent any work item such as issue,
ticket, bug, change request, feature, or story.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5638-1/18/05.

https://doi.org/10.1145/3180155.3180185

Alexander Egyed
Johannes Kepler University
Linz, Austria
alexander.egyed@jku.at

In such cases, tasks can be a coordination mechanism to manage
software development efforts.

However, tasks may also arise out of other reasons. For example,
dependencies among tasks commonly occur when closely related
software artifacts are changed (e.g., methods that call one another or
that share data) or when developers in one task wait for the output
of another task. In such cases, the developers need to explicitly
coordinate the involved tasks [?]. The developer responsible for
a given task then has to not only understand the changes implied
by the given task but also assess the impact of these changes onto
dependent tasks. The developer responsible for a dependent task, in
turn, studies these changes to assess the impact on his or her own
work. Hence, we should expect that developers access artifacts in
dependent tasks while working on their own— a practice we refer
to as change propagation.

When creating tasks, developers face the challenge of identify-
ing dependent tasks. One would assume that developers use the
links offered by task management tools to make the implicit task
dependencies explicit—links that may be inaccurate and incomplete
at times. They then use the links to identify which developers to
notify/involve about changes and which artifacts to change. Since
identifying relevant engineers and artifacts for change propagation
remains a significant problem [? ? ?], the question arises when do
links actually reflect change propagation?

We believe insights into the usefulness and applicability of change
propagation to identify task dependencies can provide an effective
basis for novel support of developers during software change. Such
insights are valuable beyond advising developers which linked tasks
to monitor for changes [?]. They determine under which conditions
change propagation metrics may detect implicit dependencies be-
tween non-linked tasks. Developers may then decide to link them,
respectively monitor them for changes. Studying change propaga-
tion provides an understanding how a-posteriori analysis of change
propagation may result in reclassifying existing links. This reduces
a developer’s effort to understand the implicit dependency between
tasks and reveals further relevant tasks during future software evo-
lution activities [? ?]. A concrete scenario in Section 1.1 motivates
the importance of the presented research and potential benefits for
developers in further detail.

To obtain these insights we need to closely investigate to which
extent and under which conditions change propagation correlates
with links and whether non-linked task pairs exhibit similar be-
havior. To the best of our knowledge, no study has investigated
change propagation across tasks. Existing work typically identi-
fies coordination needs by determining which artifacts are usually
changed together [? ? ?], how to correctly propagate changes
among artifacts [? ?], or how to detect inconsistencies [? ? ?]. Yet

https://doi.org/10.1145/3180155.3180185
https://doi.org/10.1145/3180155.3180185

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

non of the approaches consider the significance of links for change
propagation.

This paper analyses the temporal relationship between devel-
oper reading and changing source code on the one hand, and task
links on the other hand, as found in the Mylyn data set. Mylyn is
an open source task management tool for the Eclipse IDE that cap-
tures traces of developer interactions (i.e. artifact reads and writes).
Mylyn developers use this tool during their work on Mylyn. Mylyn,
therefore, serves as the data gathering tool as well as the system
under investigation in this paper.

Ultimately, we make the following four contributions:

(1) we identify seven situations that explain when linked task pairs
exhibit change propagation;

(2) we identify six motifs that explain why non-linked task pairs
exhibit change propagation;

(3) we lay out the implications of the found situations and motifs
on future development support tools; and

(4) we provide a data set that combines developer interactions, tasks,
and task links.

Specifically, we find that 64% of linked task pairs exhibit change
propagation (true positives). The remaining 36% false negatives can
be explained by three situations in which developers use links to
manage tasks dependencies that do not entail change propagation.
Examples are task synchronization and task decomposition. We
identify additional four situations that describe distinct artifact-
centric task dependencies. Artifact reuse or work continuation
dependencies, for example, explain why task pairs exhibit strong
change propagation. Further analysis showed no change propaga-
tion for 93% of all non-linked task pairs (true negatives). We discover
six motifs that enable the classification of the remaining 7% false
positives as either true positives (i.e., task pairs that should have
been linked) or true negatives (i.e., task pairs with irrelevant change
propagation). These insights are vital for designing recommenda-
tion mechanisms that utilize change propagation, for example, to
trigger change notifications between tasks, respectively, identify
relevant tasks.

The remainder of this paper is structured as follows: We refine
our general research hypothesis and present our study design in
Section 2. We analyse the Mylyn data set quantitatively in Section 3.
Section 4 and 5 detail the manual inspection of sample linked and
non-linked task pairs, respectively. We interpret our findings and
implications in Section 6. We discuss related work in Section 7
before concluding this paper with an outlook on future work in
Section 8.

1.1 Motivating Example

We motivate the need to investigate change propagation between
task pairs using an actual example task subset from the open source
Mylyn project. Mylyn [?] allows a developer to connect to a task
management tool (such as Bugzilla) for selecting tasks to work on
and captures all developer read and write events within the Eclipse
IDE. The tasks in our example address different mechanisms for
creating a new Mylyn task. Figure 1 depicts the links among tasks
as of Nov. 14, 2007. The central Task 169426 has links to five tasks.
The greyed out Task 210022 has not been set up yet. Task 209892
(bold) was just created and thus no progress has been made yet.

161646 - support / \ extend Abstract
for Clone this bug 207524 - add . Repository
create subtask 209402 - [api] add ConnectorUi. [...
L—————(Open)| .) cloneTaskData()
) action for Bugzilla Open
. method [...]

Christoph Mayr-Dorn and Alexander Egyed

0

152869 - allow to 210022 - add

create new issues 169426 - create a support for

from JUnit stack [1~ new bug from a populating local
trace D comment task editor [...]

/S/ﬁ—Y@\

3

[209892 - [api] |

. editor

Figure 1: Example excerpt of linked task pairs. Full lines
depict manually set links. The dotted line displays change
propagation among non-linked task pairs. Line labels report
the number of propagated, changed artifacts.

All tasks are in status “open”. As the developer S.P. assigned to
Task 209892 commences work, he needs to know where to look for
artifacts and their (recent) changes relevant to the realization of
his task. Likewise, the developers currently working on the other
open tasks need to assess who they should work with and perhaps
notify about changes.

Without a support tool, developers need to maintain an up-to-
date view on what is going on in each linked task, a very tedious,
time-consuming, and error-prone process as small details are easily
missed and links may be inaccurate or incomplete. In the month
prior to Nov. 14, 2007, there are 59 developers accessing ~1300 arti-
facts in 164 tasks. Alternatively, developers may choose to observe
only the directly linked task pairs and miss important developments
in other tasks. Access to change propagation information—such
as displayed in Figure 1—may serve as indicator what tasks are
relevant. S.P. may deduce from the change propagation values that
Task 161646 shares artifacts not only with the central task, but also
with Task 209402 and subsequently monitors primarily these two
for changes. Yet, it is currently unclear to what extent links be-
tween tasks describe implicit task dependencies relevant to change
propagation and, hence, whether one could reliably exploit them
to determine where changes should be propagated to, respectively
who to notify about which particular change. As we mentioned
above, no study has investigated the correlation of change propa-
gation and task links.

Understanding how change propagation occurs between linked
task pairs is also important for supporting software evolution activ-
ities. Suppose we now encounter a task for fixing a bug related to
incomplete cloning of data in the Mylyn task editor. The responsi-
ble developer may identify Task 209402 perhaps through keyword
search, referral in the task’s comments by another developer, or
vaguely remembering that it once concerned data cloning. No mat-
ter how, she then needs to understand if that Task 209402 covers
the problem, or if the linked Task 169426 is relevant also, or if any
of the other indirectly linked tasks need inspection. Applying past
change propagation to better classify the links among the tasks
assists the developer to quickly narrow down the relevant task lo-
cations. Again, this requires an informed understanding how links
among tasks coincide with change propagation.

Does the Propagation of Artifact Changes across Tasks reflect Work Dependencies? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

2 STUDY DESIGN

2.1 Research Questions

This paper aims to answer the following research questions:

RQ1: To what extent does change propagation occur between linked
task pairs? This question focuses on whether artifacts that are sub-
ject to a change in one task are eventually accessed in the linked
task and vice versa. We analyse what proportion of changed ar-
tifacts are accessed and how much linked task pairs differ from
non-linked task pairs.

Answering this question give us insights into whether linked task
pairs represent a change propagation dependency, respectively
whether change propagation indicates a need for coordination (i.e.,
creating a link between two tasks). If there is no (consistent) change
propagation among linked task pairs, then developers cannot reli-
ably use links for deciding who to involve in a task or notify about
changes.

RQ2: What are the reasons for change propagation to occur be-

tween two tasks? This question extends the previous question and
investigates under which conditions are linked task pairs showing
change propagation (true positives) and when is there no change
propagation occurring (false negatives). Additionally this questions
studies the cause for non-linked task pairs to exhibit change propa-
gation (false positives).
By identifying the cause for change propagation, we are able to de-
termine more precisely when propagating changed artifacts among
linked task pairs is relevant and when not—highly important for
providing effective change notifications. Identifying the reasons
also allows us to identify dependent but non-linked task pairs—this
is potentially indicating a missing link.

2.2 Data Gathering Method

The Mylyn project® uses the Eclipse Bugzilla bug tracker? for man-
aging task dependencies. Developers working on Mylyn attach the
captured read and write events (i.e., the interaction data) to the
tasks they are responsible for. Hence, for this project, we know
what task a given developer was working on and what artifacts he
or she was looking at or modified. In this paper we are interested
in changes at the file level.

We extracted 410 tasks with attached interaction data and at
least one Bugzilla blocks/depends_on link* - referred to as the base
set. Those 226 tasks that have a link to another task in the base set
then form the linked set. We end up with a total of 160 links in the
linked set.

The supporting online material [?] provides (i) a more detailed
description of the data gathering process, (ii) the set of tasks and
attachments considered, (iii) the source code for collecting, filter-
ing, and analysing the data, as well as (vi) the aggregated data
underlying all figures and tables in this paper.

2.3 Temporal Data Processing

The temporal order of interaction events is important to accurately
determine which changes in one task could have been accessed

https://www.eclipse.org/mylyn/
3https://bugs.eclipse.org/bugs/query.cgi
4The Bugzilla duplicates link type is irrelevant for this paper.

Sa1 Sa3
w1, r2, w7 r1, r2, w7
PCP(Sa1,{St2, Sba}) § 73" ;
PCP(sp1,{Sa2, Sa3}) ! .o ‘
[Sp1 J A[Sb2] [Sb3 J
w2, w3 r1, w4 ... w10 w1, w2, r4, 6, r20 ... r30 time o

>

Figure 2: Example for determining change propagation. The
resulting artifact sets and metrics are: W(a) = {1,2,7}, W(b) =
{1...10}, R(a) = {}, R(b) = {20...30}, CP,}, = {1,7}, CPp 4 =
{1,2,7}, ROCP(a,b) = 2/3, ROCP(b,a) = 3/3, RACP(a,b) = 2/21,
RACP(b, a) = 3/3, BiRCP(al|b) = 1.76

later—potentially by the same developer—in the linked task. Figure 2
visualizes this procedure.

We group interaction events into interaction sessions as devel-
opers tend to commit changes when they completed part of a task
rather than instantly. Figure 2 depicts example task a’s three ses-
sions (Sq1, Sa2, Sq3) on the top and task b’s three sessions on the
bottom. Session duration is represented by horizontal size, with the
read-only (r) and written (w) artifacts identified by number, e.g., in
session al a developer changes artifacts 1 and 7 and reads artifact 2.
By default, each interaction data attachment becomes one session.
We split long lasting sessions whenever two events are more than
1.5 days apart.’

We make the assumption that a change (as recorded by a write
event) in one interaction session potentially propagates to all sub-
sequent sessions in the linked task. The dashed lines in Figure 2
highlight the potential change propagation direction. The PCP set
contains all artifacts that a developer changes in one session of
task a and which subsequently a developer accesses (i.e., read or
write event) in any subsequent session of task b. For example, a
change to artifact 1 in session al is read by a developer in session
b2 who subsequently changes the artifact in b3. There is no propa-
gation across parallel or partially overlapping sessions. Changes to
artifact 2 in session a2, for example, don’t propagate to task b as
session b3 happens at the same time. The complete set of artifacts
changed in task a and propagated to task b (CP,, ;) is the union of
all U, PCP(sf“ ,S l,;) This guarantees that we count a propagated
artifact only once, even when it is accessed in multiple sessions.
Table 1 summarizes our formalization of change propagation.

The absolute number of propagated artifacts (|CP(a, b)|) tends
to overestimate the importance of change propagation between
tasks where the developer accesses a large number of artifacts
(e.g., task b in Figure 2). The more artifacts are changed within a
task, the more likely these are accessed later. Inversely, the more
artifacts a developer accesses, the more likely these artifacts were
previously changed in the linked task. The resulting high number of
propagated changes as measured by absolute change propagation
(ICP4, 1), however, might be coincidental to the dependency among
the two tasks. On the other hand, a developer working on a small
task might be interested only in a subset of all changed artifacts (e.g.,

SWe opted for this large window as open source software developers often work in
their free time and may spread work across several days to complete a task.

https://www.eclipse.org/mylyn/
https://bugs.eclipse.org/bugs/query.cgi

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Symbol Description

s{ €S; interaction session i of task j.

R; set of unique artifacts that were read-only in task #.
W; set of unique artifacts that were changed in task t, to-

gether R; + W; make up the set of unique artifacts
accessed in the scope of task .

a potential change propagation (PCP) set contains all
artifacts that were changed in session s; of task a, and

PCP(s$, S;)

which subsequently were accessed in any later session
of task b, where s; € Sg, S;} C Sp, and sj.end <
s'.start Vs' € S).

CP,p the set of unique artifacts that were changed in task a
and accessed in task b: CP, 3 = Uj; PCP(sf, S})

|CPg | absolute Change Propagation from task a to task b

BiCP(al|b) Bi-directional ~ Absolute = Change Propagation:
BiCP(al|lb) = CP, }, + CPy 4

ROCP(a, b) Relative Observed Change Propagation: ROCP(a, b) =
|CPab |/ 1Wal

RACP(a, b) Relative Attainable Change Propagation:
RACP(a, b) = |CPq /IRy + W |

RCP(a, b) Relative Change Propagation: RCP(a, b) =

(ROCP(a, b) + RACP(a, b))/2

BiRCP(al|b) Bi-directional Relative Change Propagation between
task a and task b: BiRCP(allb) = RCP(a, b) +
RCP(b, a)

Table 1: Symbols used for describing change propagation.

task a in Figure 2). This results in low absolute change propagation
and risks underestimating the relevance of the propagated changes.

We, therefore, introduce two metrics that mitigate the limitations
of absolute change propagation. Specifically, we introduce the Rel-
ative Observed Change Propagation metric (ROCP(a, b)) defined as
the ratio of propagated artifacts (CP, p) to all changed artifacts in
task a (ROCP(a,b) = |CP, p|/|Wal). A value of 1 indicates that the
developer responsible for task b accessed all artifact changed in task
a, whereas a value of 0 implies that the developer accessed none of
the changed artifacts. Thus, Relative Observed Change Propagation
ensures we consider the propagated changes only as relevant when
the developers of task b accesses close to all changed artifacts, but
not necessarily when accessing a lot of previously changed artifacts.

The Relative Attainable Change Propagation metric (RACP(a, b))
is defined as the ratio of propagated artifacts (CP,) to all accessed
artifacts in task b (RACP(a, b) = |CP, p|/|Rp + Wp1)). A value of 1
signifies that all the artifacts a developer accesses in task b have
been changed in task a before, whereas a value of 0 implies that the
developer accessed only artifacts that have not been changed in
task a before. Thus Relative Attainable Change Propagation ensures
that we consider even a small set of propagated changes as relevant
when a developer accesses a few artifacts, most of which have been
changed in the linked task before.

We combine ROCP(a, b) and RACP(a, b) to obtain the Relative
Change Propagation RCP(a, b) from task a to task b: RCP(a,b) =
(ROCP(a,b) + RACP(a, b))/2. Ultimately, the sum of RCP(a, b) and
RCP(b, a) produces the Bi-directional Relative Change Propagation
(BiRCP(al|b)) between task a and task b. A value of 0 indicates that
absolutely no change propagation occurred in either direction. A

Christoph Mayr-Dorn and Alexander Egyed

value of 2 indicates that developers accessed and changed exactly
the same set of artifacts in two concurrent tasks (a very rare case).

Examples in Section 4 show that BiRCP is better suited for de-
termining whether two non-linked tasks are dependent than bi-
directional absolute change propagation (BiCP).

3 QUANTITATIVE ANALYSIS

In this section, we quantitatively analyse the Mylyn data set to
provide an answer to RQ1. We calculate BiRCP for all linked task
pairs in the linked set. The histogram of these BiRCP values (see
Figure 3 (light grey), Table 2 left) shows that 58 linked task pairs
(~36%) don’t exhibit any change propagation. The other 102 task
pairs cover the change propagation spectrum up to 1. On average
linked task pairs show 21% BiRCP (o = 22%, median=16%) and 1.81
BiCP (o = 2.36, median=1).

We also inspect the change propagation among non-linked task
pairs from the same data set in order to confirm that the extent of
change propagation can be attributed to the links among tasks and
not to a general feature of the data set. To this end, we calculate
the same change propagation metrics (see Table 1) for all task pairs
in the base set that are more than two link-hops apart - denoted
the non-linked set. Le., we exclude task pairs that have links to
a common third task as we expect several of these pairs to yield
similarly high change propagation as directly linked task pairs. We
report the resulting BiRCP values in Table 2 (right) and Figure 3
(dark grey). Around 93% of the 82,129 pairs in the non-linked set
exhibit no change propagation. On average non-linked task pairs
exhibit 1.14% BiRCP (o = 5.55%, median=0%) and 0.12 BiCP (o =
0.66, median=0).

Comparing BiRCP average, standard deviation, median, and the
histogram distribution in Figure 3, we conclude that change propa-
gation is a feature of the linked set. We, however, find two orders
of magnitude more task pairs in the non-linked set with non-zero
change propagation (5897) compared to the linked set (102 pairs
with BiRCP > 0).

We draw the following preliminary conclusions: First, based on
the quantitative analysis alone, linked task pairs imply an underly-
ing change propagation dependency (~64% true positives). Hence, a
recommendation algorithm may utilize the links between two tasks
as an indicator that developers in one task, for example, should be
notified about changes in the linked task. Yet, from the distribution
of BiRCP values we learn that there is a significant number of task
pairs where no change propagation occurs (~36% false negatives)
and thus recommendations would be irrelevant. We subsequently
use the underlying quantitative data to sample task pairs for quali-
tatively investigating the reasons for high, respectively, low BiRCP
in Section 4.

Second, the large number of task pairs with non-zero change
propagation in the non-linked set (~7% false positives) entail that
randomly selecting two tasks from the base set and detecting change
propagation provides no indication whether the two tasks might
indeed be dependent. In other words, the data imply that a rec-
ommendation algorithm suggesting related tasks based on change
propagation alone will very likely produce a list of tasks that are not
truly relevant. Reducing the number of false positives is pertinent.
We, thus, use the underlying quantitative data to sample task pairs

Does the Propagation of Artifact Changes across Tasks reflect Work Dependencies? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

100.000 mNon-Linked Task Pairs

Linked Task Pairs

n

10.000 -

1.000 -

0.100

Percentage of task pairsin b

0.010 +

0.001 -
00 01 02 03 04 05 06 0.7 08 09 1.0 1.1 =11

Bins: Bi-Directional Relative Change Propagation

Figure 3: Histogram of the relative amount of task pairs
from the linked set (light grey) and the non-linked set (dark
grey) as determined by BiRCP bins. Note that the percentage
on the log-scale y-axis is given to 3 decimal places.

for qualitatively investigating the reasons why some non-linked
task pairs exhibit high change propagation (see Section 5).

4 QUALITATIVE ANALYSIS OF LINKED TASK
PAIRS

In this section we aim to answer RQ2 with respect to determining
the reasons for high and low change propagation among linked task
pairs using methods from Grounded Theory [?]. First, we sampled
17 task pairs from the 160 links in the linked set (see Table 3). We ap-
plied following sampling criteria: select a combination of zero and
non-zero BiRCPwith small as well as large write sets (W;). For each
task pair, we manually inspected the task details, task description
changes, and comments on the Eclipse Bugzilla website.® We cap-
tured all information pertinent to work coordination among tasks
on virtual cards in an open coding process [?]. Upon completing
the processing on all samples, we iterated through the cards and
retained those that represented common coordination concerns.
Based on these remaining cards, we aimed to establish the purpose
of the link between two tasks, and thus the reason for low or high
change propagation.

The Tasks 169426 (Sample 3 and 6) and 200634 (Sample 10) are
part of a larger graph of linked tasks for which we have interaction
data. In a second round, we included all tasks in these two graphs in
our analysis (increasing the manually analysed task pairs to a total
of 25, i.e., ~16% of all links in the linked set). In total, we inspected
41 out of the 226 tasks in the linked set. Page restrictions limit
us to a brief introduction of the two connected task graphs. We
subsequently map the 25 task pairs to the identified coordination
concerns (see also right most column in Table 3). When referring
to a sample task pair, we indicate the task’s location in Table 3 with

Shttps://bugs.eclipse.org/bugs/show_bug.cgi?id=TASKID

152869 - allow to create new
issues from JUnit stack trace

169426 - create a new
bug from a comment
207524 - add create subtask
action for Bugzilla editor
209402 - [api] add cloneTaskData()
method to TaskDataHandler
209892 - [api] extend [...] getNewTaskWizard()
to accept initialization data

210022 - add support for populating
local task editor from TaskSelection

}/{ 200634 - make "Save Password"

| 34 to keyring optional, [...]

207521 - [api] add ability to
not save passwords in [...]

207527 - [api] add callback
class for retrieving (user)
input [...]

207531 - prompt for Trac
authentication credentials [...]

207654 - prompt for JIRA credentials as needed
210483 - [api] streamline password prompting

Figure 4: Artifact change propagation graphs for two se-
lected cases: tasks are represented by boxes that report the
number of changed artifacts, their size indicates work dura-
tion, time flowing from left to right. The dark shaded box
identifies the central task that all other tasks link to. Lines
report BiRCP(al|b).

a and b, respectively. We provide exemplary excerpts from task
comments to support our conclusions.

4.1 Connected Sample Graphs

We introduced TaskGraph 1 in the motivating scenario (Sec. 1.1).
The upper three tasks represent desirable features that have been
sitting dormant for several months. Work on Task 161646 becomes
the basis for the development in the central Task 169426. Figure 4
(top) visualizes how the work in the remaining tasks occurs in
parallel to the central task. During development, subtasks 209402
and 209892 emerge that aim to provide a reusable interface for the
other tasks to program against. Task 207524 represents another
related feature, limited to a subcomponent (i.e., the Bugzilla editor).
Task 210022 continues the work of Task 152869 by fixing a bug
introduced there.

TaskGraph 2 addresses the ability to obtain authentication de-
tails from the user. Similar to TaskGraph 1, significant up-front
work is done in Task 200634 which serves as basis for refinement
and extension (see Fig. 4 bottom). In contrast to TaskGraph 1, how-
ever, here the up-front work task becomes the central task, and
all remaining linked tasks represent various subtasks. The first
two subtasks (207521 and 207527) concentrate on the two distinct
efforts to avoid storing a password and the ability to retrieve the
password on demand from the user, respectively. The next two
subtasks (207531 and 207654) integrate the capabilities of the prior

https://bugs.eclipse.org/bugs/show_bug.cgi?id=TASKID

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Christoph Mayr-Dorn and Alexander Egyed

Bin Linked Non-Linked Nr Task, Tasky |Rql |Wal |Ry| |Wa| |CP |CP |BiCP BiRCP Sit.
Abs. Rel. Abs. Rel. a,bl b,al (allb)| (allb)
1 208629 179254 1 2 35 41 1 2 3 0.61 S7
00 58 363% 76,231 92.819% 2 222833 226822 48 28 20 3 0 0 0 0.00 S1
01 10 63% 2589 3.152% 3 161646 169426 665 4 38 25 6 0 6 0.26 S4
0.2 24 150% 1864 2.270% 4 191793 202547 24 15 121 2 0 0 0 000 S2
0.3 21 13.1% 776 0.945% 5 244653 242445 43 15 33 1 0 1 0.05 S3
0.4 16 10.0% 232 0.282% 6 209402 169426 629 13 38 25 1 2 3 0.09 S2
0.5 7 44% 62 0.075% 7 244359 238038 35 0 59 12 0 4 4 022 S6
0.6 12 75% 318 0.387% 8 393640 386344 2 3 154 71 0 3 3 032 S6
0.7 7 4.4% 25 0.030% 9 201464 196700 6 4 1467 33 0 7 7 0.46 S4
0.8 4 25% 16 0.019% 10 207531 200634 21 15 51 28 0 0 0 0.00 S2
0.9 4 0.005% 11 229014 176212 45 0 1 2 0 2 2 052 S7
12 262107 261683 3 0 1 5 0 2 2 053 S7
1.0 1 06% 2 0.002% 13 217694 205861 2 5 1 2 1 2 3 091 S6
11 7 0.009% 14 210170 189313 0 1 1 2 0 1 1 075 S7
>1.1 2 0.002% 15 303431 199345 1 3 71 67 2 3 5 074 S6
Table 2: Absolute and relative num- 16 231336 216150 22 15 21 21 8 8 16 0.66 S5
17 277191 272621 4 1 59 16 1 1 2 0.64 S6

ber of task pairs from the linked set

(left) and the non-linked set (right) per
BiRCP bin.

two task in two different connectors to third party systems (Trac
and JIRA). Work in the last task (210483) occurs several weeks after
the previous tasks have been completed and undertakes rework of
existing artifacts to improve usability.

4.2 Situations leading to low BiRCP

We found three main situations that lead to low Bi-directional
Relative Change Propagation.

$1: Task Decomposition One task serves as parent task for
multiple child tasks which refine the work described in the parent
task. When the parent task is predominantly used for coordinating
work and subsequently involves little coding effort and thus few
changes, then there is little opportunity for change propagation.

For example, Task 226822 (b) in Sample 2 serves as central parent
task coordinating the refactoring of attachment data handling. The
linked Task 222833 is one among a few child tasks realizing the
refactoring. The task pair exhibits low BiRCP as the parent task
includes only a few, intermittent changes. See, e.g., one comment
in Task 226822:

Remaining work:
- set defaults for the task editor or working copy
- replace TaskSelection with new API

$2: Separation of concerns applies to task pairs that concep-
tually belong together (hence the task links) but address different
aspects of the same concept and thus—regardless of the number
of changed artifacts—share few changed artifacts as work in the
respective tasks tends to affect different artifact sets.

We find such situations in TaskGraph 1—Task 207524, 209402 (a)
(i.e., Sample 6), and 209892 all linked to Task 169426 (b)—and in Task-
Graph2; here in Sample 10 Task 207531(a) links to Task 200634(b).
In Sample 4 both tasks are related refactorings postponed to a dif-
ferent release. The Tasks 191793 (a) focuses on code refactoring, the

Table 3: Sampled linked task pairs selected for qualitative analysis. The Sit. col-
umn lists the respective situations S1 to S7; for metric definitions, see Table 1.

linked Task 202547 (b) focuses on feature restructuring of non-code
artifacts.

$3: Synchronization aims at coordinating work among task
pairs that are likely to change the same artifact and cause merge
conflicts. Typically only a few central artifacts are subject to a
potential write conflict and thus BiRCP remains low.

We find such a case in Sample 5: Work in both tasks involves
changes to a central file (the only artifact changed by both tasks).
The link serves as locking mechanism to avoid a conflict: i.e., first
completing Task 244653 (a) and subsequently the linked Task 242445
(b). Note following excerpt from the comments of Task 242445:
Helen, it is probably best to wait until the patch on bug 244653 is

merged before starting on this to avoid conflicts.

4.3 Situations leading to high BiRCP

During our analysis we identified four situations that give rise to
high BiRCP.

S$4: Work Continuation occurs when developers in one task
explicitly hand over development effort to another task. Work in
the continuing task is then likely to change the same artifacts and
hence lead to high BiRCP.

In Sample 9 we find developers in Task 196700 (b) implementing

a new feature. This feature contained a bug that was subsequently
corrected in the linked Task 201464 (a). The former task thus con-
tinued and completed the work of the latter task, hence the large
BiRCP. See following comment in Task 196700:
Warning! There appears to be some corruption [...] there is another
bug to track this issue: bug 201464. I would avoid using the new task
editor feature on any kind of production xplanner server until that
bug is fixed.

In TaskGraph 1, work on Task 169426 (b) and 209892 continues
on code from Task 161646 (a): in the comments for Task 169426 we
find:

Does the Propagation of Artifact Changes across Tasks reflect Work Dependencies? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Thanks for the patch Frank. It would be great if you could make the
implementation more generic so it could be reused for bug 161646 which
overlaps significantly with this bug.

In TaskGraph 2, Task 210483 continues the work of streamlining
the artifacts of preceding tasks 207521, 207527, 207531, and 207654.

§5: Artifact Reuse resembles S4: Work Continuation but differs
in the explicit focus on making use of the output of a linked task,
rather than continuing the work.

In TaskGraph 1, work on Task 161646 is explicitly postponed to
continue after the output of linked Task 209402 is available:

We’re holding off on this until we can make use of the api that emerges
from bug#209402.

In TaskGraph 2, developers in Tasks 207521 and 207527 reuse
code of the parent Task 200634 as the comment in Task 200634
highlights:

[...] Thanks, I have used a mix of your patches as the base for my
modifications.

In Sample 16, Task 231336 (a) fixes a sorting problem and pro-
vides code to be used in the linked Task 216150 () that is equally
concerned with sorting. A comment excerpt in Task 231336 states:
[...] for bug#216150 the compare part is now in class TaskComparator
[...]

S$6: Emerging Task Decomposition results in several tasks
becoming the children of the common, central linked task (similar
to S1). However, here, significant up-front work is done in the
central task and the child tasks are created one by one as needed.

In Sample 7, a significant amount of work occurred in Task
238038 () (about providing time range based folding for comments)
when the linked Task 244359 (a) was specified as a subtask to
implement a sub-aspect of the parent (implement grouping strategy
for task comments). Hence, the BiRCP among linked task pairs is
high. The central task exhibits further links to other subtasks that
were created step by step as the work progressed. In the emerging
child Task 244359 we find following comment:

Extract the implementation for grouping of task comments discussed on
bug 238038.

In Sample 8 the two tasks address support for test integration
with third party systems. In Task 386344 (b), the work is done for
one third party system (here Trac). In the linked Task 393640 (a),
the work is then replicated for another third party system which
explains the high BiRCP. In Sample 13, Task 217694 (a) addresses
which icon to use inside a tooltip while the linked Task 205861
(b) coordinates several tasks on improving tooltip presentation.
Similar, in Sample 15, Task 303431 (a) is about colors, the linked
Task 199345 (b) ties together tasks about configuring labels. Finally,
Sample 17 has Task 277191 (a) focusing on Ul issues in the connector
discovery dialog and the linked Task 272621 (b) coordinating the
Mylyn connector discovery mechanism.

Emerging Task Decomposition is closely related to S5: Artifact
Reuse. If we restructure TaskGraph 1 to set Task 161646 as the
parent task, and have Tasks 169426, 209402, and 209892 as child
tasks, then these three child tasks would constitute examples of
emerging task composition rather than simply artifact reuse.

$7: Small Bug Fixes involve corrections to a handful of artifacts
that are changed in both tasks resulting in high BiRCP. In Sample
11, both tasks are related bugs about hyperlink processing which
were independently rectifiable. Task 176212 (b) constituted minor

corrections to only two artifacts which were subsequently changed
again during work on the linked Task 229014 (a). Similar, the tasks
in Sample 12 are two related bugs, here, one about the size, the other
about the position of a user interface element. The single changed
artifact in the Task 261683 (b) was changed again in the linked
Task 262107 (a). Also Sample 1 fits this situation. Task 208629 (a)
fixes a small bug, hence only a few changes, which largely overlap
with the refactoring done in the linked Task 179254 (b). Sample 9
could also be classified as S7: Small Bug Fix, but comments and the
link to a feature development task better places it with S4: Work
Continuation. Finally, in Sample 14, Task 210170 (a) fixes tooltip
visibility, relevant for improving tooltip positioning in the scope of
the linked Task 189313 (b).

5 QUALITATIVE ANALYSIS OF NON-LINKED
TASK PAIRS

In this section we complete our answer to RQ2. In Section 3, we
found that a significant amount of non-linked task pairs exhibit
high BiCP and/or high BiRCP. Here we manually inspect sample
non-linked task pairs to determine whether high BiRCP is indica-
tive of missing links or whether we simply detect a lot of false
positives. To this end, we sampled 22 non-linked task pairs from
the 5897 links in the non-linked set that have non-zero BiRCP, a
total of 32 tasks. We applied following sampling criteria: select a
combination of small as well as large write sets (W;), a range of
1 to highest observed BiCP, and a range of 0.1 to 1.5 BiRCP. We
followed the same coding procedure of the qualitative analysis of
linked task pairs (see Section 4) with a focus on the set of propagated
artifacts (CP, j), any available links to other tasks, and comments.
We cannot introduce the tasks individually due to page limits.

We identified six motifs that describe when task pairs exhibit
high BiCP and/or high BiRCP and which explain when the these
metrics uncover a true (albeit implicit) dependency among the tasks.

M1: Task Cluster Membership We find several cases where
the tasks address the same implementation topic, e.g., hyperlink
issues in Sample 12 and 114 or connector discovery in samples 14
and I15. Typically these tasks have links to other tasks that are
directly linked. Recall that we excluded two-hop related task pairs
in the quantitative analysis. Figures 5 and 6 (left) depict how these
samples are three hops (I4, I115) or more (I2, 114) apart but still part
of a cluster of related tasks.

M2: Support Cluster Membership Similar to M1, we find sev-
eral tasks that focus on implementing and/or testing a particular
feature or subsystem. Figure 6 (right) visualizes how change propa-
gation among the tasks in Samples 19, I11, 116, and 118 ties together
tasks on supporting a new version of Bugzilla that otherwise are
not explicitly linked. Similar, Sample 16 brings together two depen-
dent tasks: one fixing a new feature, the other provisioning the
respective testing infrastructure.

M3: Mutual Access of Utility Artifacts Task pairs exhibit
high BiRCP when they primarily read or update commonly used
utility artifacts. All tasks in Samples I8 and I17 require Ul features to
be configurable. While the tasks focus on different Ul elements (here
labels, line highlighting, and search characters), they all needed to
make changes to the same set of UI and preference-centric artifacts.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Christoph Mayr-Dorn and Alexander Egyed

Nr Taskg, Taskp |Ra|l |Wa| |Rp| |Wp| |CP |CP |BiCP BiRCP M.

abl bal (alb)l (allb)
I1 208629 220688 1 2 0 1 1 1 2 142 M5 :
2 164221 176212 2 4 1 2 2 2 4 125 Ml Bug 167941 - Tooh D hor
I3 206568 216677 7 10 0 1 1 1 2 108 Ms P hyp’eerﬁﬁ'l:’seidn?f“?ﬁom does not detect [...]
I4 276942 277910 3 3 1 1 1 1 2 1.00 M1 | correc.tly [
I5 167941 208629 16 19 1 2 3 1 4 0.84 M5 | '
I6 201464 196523 6 4 2 2 3 0 3 0.75 M2 114
17 219911 175922 2 4 52 17 3 3 6 073 M4 | r——— =7 498
I8 199345 299697 71 67 6 6 5 5 10 0.68 M3 I | _ v :
19 252297 256045 5 9 4 3 5 0 5 063 M2 | B:}?p:ﬁff;r:ﬁ:;‘” B‘:Scz;zif; :
110 200634 196056 51 28 7 16 1 11 12 0.45 M4 l problems and comment#number
I11 226851 242480 34 28 51 52 14 3 17 037 M2 I suggestions link on bug editor
112 143011 160389 52 57 150 101 1 19 20 0.19 M6 | :
113 220688 216677 0 0 1 1 0 1 1.00 M5 I . /|12 ”s
114 244442 164221 10 3 2 4 2 2 4 0.83 M1 | ;
115 276942 278331 3 3 1 3 1 2 3 0.79 M1 | Moo Ore — 7-6212_
116 242480 254695 51 52 0 2 1 2 3 0.77 M2 | Lings o Task editor hyo egr“nkm ol Bug
117 199345 318045 71 67 9 4 6 2 8 053 M3 | include parens and hyperlink is getting 1
118 252297 242480 5 9 51 52 3 1 9 053 M2 other punctuation extra character
119 272207 290465 45 61 17 30 4 13 17 0.35 M6
120 200634 160389 51 28 150 101 0 15 15 0.17 M6 Figure 5: Examples of Task Cluster Mem-
121 238038 236690 59 12 124 55 0 14 14 023 M6 pership for sample non-linked task pairs.
122 224780 175922 183 27 52 17 0 12 12 0.38

M6 Dotted lines report BiPC and BiRCP, full

Table 4: Sample non-linked task pairs selected for qualitative analysis. The M. col-lines depict links among tasks, dashed

umn lists the respective motifs M1 to M6; for metric definitions, see Table 1.

M4: Orthogonal Concerns Tasks tend to access the same arti-
facts when these encode overlapping topics. Task a in Sample 17
focuses on setting certain properties when moving a bug to another
product; task b focuses on supporting custom fields in Bugzilla. The
propagated artifacts implement Bugzilla data handling functional-
ity. Similar, both tasks in Sample I10 are related to connecting to
Bugzilla for synchronizing data: task a addresses password acquisi-
tion, task b addresses data fetching.

M5: Core Artifact Access In several samples, one or both tasks
access only a very small set of one to three common artifacts. This
results in high BiRCP but no real underlying task dependency when
these artifacts are at the core of the system under development
and thus subject to many unrelated changes. All tasks in Sam-
ples 11,13, I5, and 113, propagate changes of the same core artifact
(AbstractRepositoryTaskEditor). The tasks, however, are oth-
erwise completely unrelated.

Mé6: Grand Tasks We inspected task pairs with high BiCP to
check whether absolute instead of relative change propagation
is a suitable indicator for dependent tasks. Only tasks accessing
many artifacts are able to yield high BiCP and subsequently are less
likely to also yield high BiRCP as Table 4 shows. Task pairs with
BiCP > 11) tend to exhibit comparatively lower BiRCP (< 0.45)
and vice versa. All tasks in Samples 112, 119, 120, 121, and 122 access
a high number of artifacts (|R; + W;| ranging from ~20 to ~250).
In these samples, one task is typically a refactoring effort while the
other task is an unrelated, large feature implementation or bug fix.

lines depict task references in the com-
ments.

6 DISCUSSION

Manual inspection of linked task pairs revealed seven reoccurring
situations. These explain why Bi-directional Relative Change Propa-
gation coincides only with a subset of linked task pairs. Specifically,
we find medium to high BiRCP (i.e., >0.2) only when links repre-
sent an underlying artifact-centric task dependency. We infer that
developers use links to manage control flow, data flow, task de-
composition, and simultaneity dependencies [?]. These situations
are highly relevant for the design of development coordination
support tools and thus have significant potential impact on soft-
ware engineering practise. Qualitative analysis shows evidence that
high BiRCP is able to identify implicit dependencies among task
pairs when additional information on artifacts (e.g., core or utility)
and tasks (e.g., refactoring) is considered. Absolute bi-directional
change propagation is less well suited as it identifies mostly tasks
involving many artifact changes.

Situations explain why a large proportion of links show no
change propagation. Yet, a lack of change propagation doesn’t
necessarily mean that developers don’t need artifact-centric coor-
dination. In situation S1: Task Decomposition or S2: Separation of
Concerns, for example, the change propagation between in-directly
linked task pairs, e.g., among child tasks of a common parent task,
identifies task pairs where developers would benefit from change
notification. The motivating scenario (Sec. 1.1) describes such a
situation. Inversely, situations leading to high change propagation
might not require detailed change propagation. In S4: Work Contin-
uation, we only expect work to happen in the linked follow-up task
once work handover occurred. Hence, developers assigned to the
initial task would not need to know about changes in the follow-up

Does the Propagation of Artifact Changes across Tasks reflect Work Dependencies? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Bug 276942 - u Bug 277910 - use Bug 256045 - Bug 242480 - port Bug 201464 -
conneclor discovery L _ _ »=wq dialog font for Reassign [..] is not Bugzilla tests to XPlanner new task
wizard [...] navigation 21/1.00 discovery wizard present for Bugzilla Mylyn 3.0 framework editor causes some
[...] management Version >= 3.0 corruption [...]
~ 3 > T -
Y 11s ' K ! s H
3/0.79 19 118 116 111 :
-~ 5/0.63 9/0.53 3/0.77 17/0.37 :
Bug 278331 - present ' ," : . 6
discovery wizard - -
content before nggzzﬁfg 72 Bug 254695 - unit Bé’fstzozrgz?ﬂx;?;” 3/0.75
verifying availability Changing the Status test 3.2 bugzila the new bugzilla task [
status changes - M
\ ofabugl...] editor '
~ :
Bug 276232 - Bug 272621 - create \
Connector Discovery Mylyn Connector Bug Zst?)ii?t.fc?:sure Butg lztﬁgsal\/;yll\lyiec’
wizard changes discovery mechanism forthcoming Bugzilla XPlanner repository
32 for testing

Figure 6: Examples of Task Cluster Membership (left) and Support Cluster Membership (middle, right) for sample non-linked
task pairs (dotted lines, reporting BiPC and BiRCP). Full lines depict links among tasks.

task. Rather, they should receive a warning when they are about
to make any changes as developers of the follow-up task are not
expecting changes. Links in situations S5, S6, and S7 indicate that
developers in either linked task are interested in an overlapping
set of artifacts and hence would benefit from change-propagation
centric coordination support.

The motifs found among the non-linked task pairs with high
BiRCP suggest that developers would benefit from coordination
support beyond directly linked task pairs. M1: Task Cluster Mem-
bership demonstrates that change propagation and multi-hop paths
across existing links identify dependent task pairs that, for example,
serve as input to a change notification mechanism. Even in the
absence of multi-hop paths, change propagation identifies depen-
dent tasks in M2: Support Cluster Membership and M3: Mutual
Access of Utility Artifact. In the case of M3 identifying non-linked
task pairs assists the developer in finding examples how to use a
particular artifact, suggestions on what artifacts to change as well,
and recovering design justifications from comments.

The motifs highlight that change propagation alone is insufficient
to reliably determine dependent (but non-linked) task pairs. M5:
Core Artifact Access points out the need to identify frequently
changed artifacts (i.e., the core artifacts) and assign less importance
to them when measuring change propagation. Doing so reduces
the likelihood of detecting false positive task pairs. Similar, M6:
Grand Tasks suggests to ignore non-linked task pairs that exhibit
a high amount of accessed artifacts and high absolute BiPC. The
non-linked samples classified as M6 motivate a BiRCP threshold of
0.4. This reduces the non-linked sample pairs under consideration
for implicit dependencies from ~5800 down to 436. Note that this
threshold is higher than the BiRCP values we find in situations
with high change propagation among linked task pairs. Some task
pairs in situations S4 and S6 exhibit BiRCP between 0.2 and 0.3. As
we mentioned, the change propagation metrics alone are often not
sufficient to reliably interpret a link. In the case of Samples 3 and
7, the manually inspected context determines their classification.
Currently, the number of manually investigated samples is too low
to infer the distribution of situations and motifs across the complete
Mylyn data set and thus to reliably select a threshold.

Change propagation metrics are also useful for a-posteriori (re-)
classification of links. Accurate and complete links are important
during maintenance efforts as the basis for identifying relevant
tasks to inspect. Correcting a bug requires identifying tasks that
fixed a similar bug or similar location before (i.e., S7). Developers
engaging in refactoring may benefit from knowing where work has
continued from an initial task and studying the latter for extracting
design rationale (S4 and S5). High change propagation among child
tasks in situations S1 and S6 assist in identifying closely related
tasks, separating them from tasks that implement independent
concerns (S2).

6.1 Threats to validity

6.1.1 Internal Validity. We address researcher bias by analysing
data from an open source system rather than conducting controlled
experiments. The analysis focused on artifacts and tasks and was
not specifically tailored to Java development in general or the Mylyn
project in particular. The manual inspection during qualitative
analysis showed no indication that the use of links was specifically
adapted to the Mylyn development “process”.

With respect to the data set quality, we noticed that occasionally
interaction attachments appeared to be missing (e.g., a long interval
between interaction data attachment and commit message in the
comments). The impact on our results, however, is minimal as
missing attachments occurred typically towards the end of a task
that contained several other preceding attachments. We thus expect
the missing attachments to contain little additional information.

6.1.2 External Validity. We analysed only a single data set as
we are not aware of other real world projects aside from Mylyn
that make a significant amount of interaction data and linked tasks
available. Mylyn interaction data upload capabilities are not avail-
able by default and thus not widely used beyond the Mylyn project.
Hence, we are careful to generalize our findings beyond the scope
of the Mylyn project.

We can infer from other metrics, however, that the Mylyn project
is similar to other projects. Thompson et al.[?] analyse the task
links of three open sources projects including Mylyn and finds the

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

ratio of links classified as Specification or Problem similar. Zou and
Godfrey [?] report on maintenance tasks and finds a median of 2
for edited files and the median of viewed-only files in a task is 4.
We found a median of 3 and 6, respectively, for Mylyn. D’Ambros
et al. [?] report similar commit transactions per class and change
coupling metrics for Mylyn and ArgoUML. Heck and Zaidman
[?] show that Mylyn has similar duplicate bug reports as other
open source projects. All indications are that Mylin data are in fact
transferable. We don’t expect all situations and motifs to arise in
other projects, nor do we claim completeness, but the identified
dependencies are found beyond the software engineering domain
[?]

The Mylyn dataset might not accurately represent (non-open
source) development environments where other communication
channels (such as direct messaging or face-to-face discussion) exist
for conveying the impact of an artifact change [?]. This reduces a
developer’s need to inspect (i.e., read only) artifacts. We speculate
that fewer observed read-only events subsequently result in lower
levels of change propagation. Additional data sources and analysis
are necessary to assess the effect of read-only events on change
propagation in these environments.

Bugzilla limits link types to duplicates and blocks/ depends_on
while other task management tools (e.g., JJRA, Redmine) provide
diverse and customizable link types. The available link types, how-
ever, have no impact on the results as our analysis is independent
of the link type semantics and direction. The identified seven situ-
ations reflect generally applicable coordination concerns that are
common in software development and in no way specific to Bugzilla
or the Mylyn project. We suspect that data from a project using
JIRA or Redmine will show differences in change propagation for
the various link types but similar results across all links.

7 RELATED WORK

Prior investigations of change propagation studied primarily the
logical coupling between artifacts, i.e. which artifacts tend to co-
evolve [? ? ?] and not the links among tasks. These approaches
observe which artifacts frequently occur in the same commit (or
in commits in temporal proximity) independent of the task these
commits belong to. Zou et al. [?] apply interaction histories for
detecting such coupling as they are more rich in information. They
present a set of change patterns based on the temporal order of
artifact reads and writes. Bantelay et al. [?] combine interaction
histories and commit data from the Mylyn project to improve the
detection of evolutionary coupling between artifacts. Kobayashi
et al. [?] also use the interaction history to determine during an
artifact change which other artifacts are accessed and what artifacts
are changed in succession. The resulting graph is used to predict
which artifacts to change next. Robbes et al. [?] record detailed ar-
tifact changes from IDE interactions via SpyWare [?] for predicting
sequential changes.

All these approaches scope their analysis to artifact changes
within a single (often implicit) task. The underlying data sets either
lack links among tasks or have no association of events to explicit
tasks. Our data set enables for the first time the study of change
propagation across linked tasks.

Christoph Mayr-Dorn and Alexander Egyed

Several tools utilize developers’ interactions with the IDE to
suggest relevant artifacts. NavTracks [?] supports navigation dur-
ing software maintenance by suggesting related files based on the
developers’ IDE interaction path in previous navigation sessions.
TeamTracks [?] aims to ease program comprehension visualizing
navigation patterns. Configurable HeatMaps [?] capture how often
a file was changed or visited. Mylyn [?] is the most prominent
tool that associates observed developer interactions with tasks. It
thus determines the relevant artifacts for the developer’s underly-
ing task. Similar, Hipikat [?] supports the developer in retrieving
relevant artifacts from the project’s overall history. Its considers
documents, tasks, commits, messages, and artifact changes but not
the detailed interaction history.

These tools offer assistance independent of tasks or focus on one
single task context, i.e., the underlying conceptual models lack task
links. We investigated how changes propagate across tasks.

Prior work studied work breakdown relationships based on task
title [?] but didn’t consider artifact changes to classify relations.
Work on socio-technical congruence (STC) assesses team perfor-
mance by investigating whether developers assigned to linked tasks
also communicate and work on common artifacts. Initial work on
STC [?] substituted co-evolving artifacts from commit data for
explicit work dependencies. Valetto et al. [?], for example, propose
mining software repositories to determine socio-technical congru-
ence. Later approaches applied explicit tasks dependencies [?]. As
our research has shown, developers use task links for managing
diverse coordination needs, specifically that change propagation
doesn’t necessarily coincide with explicit links. A lack of artifact
change propagation (or co-evolution), therefore, doesn’t imply there
is no dependency that needs managing and hence communication.
Our work, thus, adds another challenge to measuring, understand-
ing, and achieving social-technical congruence [?].

8 CONCLUSIONS AND OUTLOOK

We presented a quantitative and qualitative analysis of artifact
change propagation in the Mylyn data set. We found seven situa-
tions describing how developers apply task links to manage implicit
dependencies such as task synchronization and task continuation—
not all of which are artifact-centric. This explains why change
propagation occurs for only 64% of all linked task pairs. We identi-
fied additional six motifs that group non-linked task pairs according
to either missing links or incidentally high change propagation.

We discussed the importance of our findings for development
coordination support mechanisms. These rely on a classification
of linked task pairs and non-linked task pairs. How exactly such
mechanisms determine the respective situations and motifs auto-
matically and reliably is subject to our future research. We intend
to extend our qualitative analysis to all links in the Mylyn data
set in order to identify complementary metrics based on graphs of
directly linked tasks, artifact change frequency, and other similarity
metrics (e.g., [?]) beyond change propagation.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund (FWF):
P29415-NBL funded by the Government of Upper Austria.

Does the Propagation of Artifact Changes across Tasks reflect Work Dependencies? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES

[

[

=

=

[

=

=

=

Fasil Bantelay, Motahareh Bahrami Zanjani, and Huzefa H. Kagdi. 2013. Compar-
ing and Combining Evolutionary Couplings from Interactions and Commits. In
20th Working Conference on Reverse Engineering, WCRE 2013, Koblenz, Germany,
October 14-17, 2013, Ralf Lammel, Rocco Oliveto, and Romain Robbes (Eds.). IEEE
Computer Society, 311-320. https://doi.org/10.1109/WCRE.2013.6671306
Lionel C. Briand, Yvan Labiche, and L. O’Sullivan. 2003. Impact Analysis and
Change Management of UML Models. In 19th International Conference on Software
Maintenance (ICSM 2003), The Architecture of Existing Systems, 22-26 September
2003, Amsterdam, The Netherlands. IEEE Computer Society, 256-265. https://doi.
org/10.1109/ICSM.2003.1235428

Marcelo Cataldo, Patrick A. Wagstrom, James D. Herbsleb, and Kathleen M.
Carley. 2006. Identification of Coordination Requirements: Implications for the
Design of Collaboration and Awareness Tools. In Proceedings of the 2006 20th
Anniversary Conference on Computer Supported Cooperative Work (CSCW "06).
ACM, New York, NY, USA, 353-362. https://doi.org/10.1145/1180875.1180929
Davor Cubranic, Gail C. Murphy, Janice Singer, and Kellogg S. Booth. 2005.
Hipikat: A Project Memory for Software Development. IEEE Trans. Software Eng.
31, 6 (2005), 446-465. https://doi.org/10.1109/TSE.2005.71

Marco D’Ambros, Michele Lanza, and Romain Robbes. 2009. On the Relationship
Between Change Coupling and Software Defects. In 16th Working Conference on
Reverse Engineering, WCRE 2009, 13-16 October 2009, Lille, France, Andy Zaidman,
Giuliano Antoniol, and Stéphane Ducasse (Eds.). [EEE Computer Society, 135-144.
https://doi.org/10.1109/WCRE.2009.19

Cleidson R. B. de Souza and David F. Redmiles. 2008. An Empirical Study of
Software Developers” Management of Dependencies and Changes, See [?], 241-
250. https://doi.org/10.1145/1368088.1368122

C.R. B. de Souza and D. F. Redmiles. 2011. The Awareness Network, To Whom
Should I Display My Actions? And, Whose Actions Should I Monitor? IEEE
Transactions on Software Engineering 37, 3 (May 2011), 325-340. https://doi.org/
10.1109/TSE.2011.19

Robert DeLine, Mary Czerwinski, and George G. Robertson. 2005. Easing
Program Comprehension by Sharing Navigation Data. In 2005 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC 2005), 21-
24 September 2005, Dallas, TX, USA. IEEE Computer Society, 241-248. https:
//doi.org/10.1109/VLHCC.2005.32

Alexander Egyed. 2011. Automatically Detecting and Tracking Inconsistencies
in Software Design Models. IEEE Trans. Software Eng. 37, 2 (2011), 188-204.
https://doi.org/10.1109/TSE.2010.38

Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein. 2008. Generating
and Evaluating Choices for Fixing Inconsistencies in UML Design Models. In
23rd IEEE/ACM International Conference on Automated Software Engineering (ASE
2008), 15-19 September 2008, L’Aquila, Italy. IEEE Computer Society, 99-108.
https://doi.org/10.1109/ASE.2008.20

Harald C. Gall, Karin Hajek, and Mehdi Jazayeri. 1998. Detection of Logical
Coupling Based on Product Release History. In 1998 International Conference on
Software Maintenance, ICSM 1998, Bethesda, Maryland, USA, November 16-19, 1998.
IEEE Computer Society, 190-197. https://doi.org/10.1109/ICSM.1998.738508
Petra Heck and Andy Zaidman. 2013. An analysis of requirements evolution in
open source projects: recommendations for issue trackers. In 13th International
Workshop on Principles of Software Evolution, IWPSE 2013, Proceedings, August
19-20, 2013, Saint Petersburg, Russia, Romain Robbes and Gregorio Robles (Eds.).
ACM, 43-52. https://doi.org/10.1145/2501543.2501550

Li Jiang, Kathleen M. Carley, and Armin Eberlein. 2012. Assessing team per-
formance from a socio-technical congruence perspective. In 2012 International
Conference on Software and System Process, ICSSP 2012, Zurich, Switzerland, June
2-3, 2012, D. Ross Jeffery, David Raffo, Ove Armbrust, and LiGuo Huang (Eds.).
IEEE, 160-169. https://doi.org/10.1109/ICSSP.2012.6225961

Massila Kamalrudin, John C. Grundy, and John G. Hosking. 2010. Managing
Consistency between Textual Requirements, Abstract Interactions and Essen-
tial Use Cases. In Proceedings of the 34th Annual IEEE International Computer
Software and Applications Conference, COMPSAC 2010, Seoul, Korea, 19-23 July
2010, Sheikh Igbal Ahamed, Doo-Hwan Bae, Sung Deok Cha, Carl K. Chang,
Rajesh Subramanyan, Eric Wong, and Hen-I Yang (Eds.). IEEE Computer Society,
327-336. https://doi.org/10.1109/COMPSAC.2010.40

Mik Kersten and Gail C. Murphy. 2006. Using Task Context to Improve Pro-
grammer Productivity. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2006, Portland, Oregon,
USA, November 5-11, 2006, Michal Young and Premkumar T. Devanbu (Eds.). ACM,
1-11. https://doi.org/10.1145/1181775.1181777

Takashi Kobayashi, Nozomu Kato, and Kiyoshi Agusa. 2012. Interaction Histories
Mining for Software Change Guide. In Proceedings of the Third International
Workshop on Recommendation Systems for Software Engineering, RSSE 2012, Zurich,
Switzerland, June 4, 2012, Walid Maalej, Martin P. Robillard, Robert J. Walker, and
Thomas Zimmermann (Eds.). IEEE, 73-77. https://doi.org/10.1109/RSSE.2012.
6233415

Thomas W. Malone and Kevin Crowston. 1994. The Interdisciplinary Study of
Coordination. ACM Comput. Surv. 26, 1 (1994), 87-119. https://doi.org/10.1145/
174666.174668

Christoph Mayr-Dorn. 2018. Supporting Online Material for ICSE2018 submission.
(Jan 2018). https://doi.org/10.6084/m9.figshare.5346253.v1

Sebastian C. Muller and Thomas Fritz. 2013. Stakeholders’ Information Needs
for Artifacts and Their Dependencies in a Real World Context. In 2013 IEEE
International Conference on Software Maintenance, Eindhoven, The Netherlands,
September 22-28, 2013. IEEE Computer Society, 290-299. https://doi.org/10.1109/
ICSM.2013.40

Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. 2003. Con-
sistency Management with Repair Actions. In Proceedings of the 25th International
Conference on Software Engineering, May 3-10, 2003, Portland, Oregon, USA, Lori A.
Clarke, Laurie Dillon, and Walter F. Tichy (Eds.). IEEE Computer Society, 455-464.
https://doi.org/10.1109/ICSE.2003.1201223

Romain Robbes and Michele Lanza. 2008. SpyWare: a Cchange-Aware Develop-
ment Toolset, See [?], 847-850. https://doi.org/10.1145/1368088.1368219
Romain Robbes, Damien Pollet, and Michele Lanza. 2010. Replaying IDE Interac-
tions to Evaluate and Improve Change Prediction Approaches. In Proceedings of
the 7th International Working Conference on Mining Software Repositories, MSR
2010 (Co-located with ICSE), Cape Town, South Africa, May 2-3, 2010, Proceed-
ings, Jim Whitehead and Thomas Zimmermann (Eds.). IEEE Computer Society,
161-170. https://doi.org/10.1109/MSR.2010.5463278

David Réthlisberger, Oscar Nierstrasz, Stéphane Ducasse, Damien Pollet, and
Romain Robbes. 2009. Supporting Task-Oriented Navigation in IDEs with Config-
urable HeatMaps. In The 17th IEEE International Conference on Program Compre-
hension, ICPC 2009, Vancouver, British Columbia, Canada, May 17-19, 2009. IEEE
Computer Society, 253-257. https://doi.org/10.1109/ICPC.2009.5090052

Anita Sarma, Jim Herbsleb, and André Van Der Hoek. 2008. Challenges in Measur-
ing, Understanding, and Achieving Social-Technical Congruence. In Proceedings
of Socio-Technical Congruence Workshop, In Conjuction With the International
Conference on Software Engineering.

Wilhelm Schéfer, Matthew B. Dwyer, and Volker Gruhn (Eds.). 2008. 30th Inter-
national Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008. ACM.

Janice Singer, Robert Elves, and Margaret-Anne D. Storey. 2005. NavTracks:
Supporting Navigation in Software Maintenance. In 21st IEEE International Con-
ference on Software Maintenance (ICSM 2005), 25-30 September 2005, Budapest,
Hungary. IEEE Computer Society, 325-334. https://doi.org/10.1109/ICSM.2005.66
Anselm Strauss and Juliet Corbin. 1990. Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Sage Publications, Inc.

C. Albert Thompson, Gail C. Murphy, Marc Palyart, and Marko Gasparic. 2016.
How Software Developers use Work Breakdown Relationships in Issue Reposito-
ries. In Proceedings of the 13th International Conference on Mining Software Reposi-
tories, MSR 2016, Austin, TX, USA, May 14-22, 2016, Miryung Kim, Romain Robbes,
and Christian Bird (Eds.). ACM, 281-285. https://doi.org/10.1145/2901739.2901779
Giuseppe Valetto, Mary Helander, Kate Ehrlich, Sunita Chulani, Mark Wegman,
and Clay Williams. 2007. Using Software Repositories to Investigate Socio-
Technical Congruence in Development Projects. In Mining Software Repositories,
2007. ICSE Workshops MSR’07. Fourth International Workshop on. IEEE, 25-25.
Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An approach
to Detecting Duplicate Bug Reports using Natural Language and Execution
Information. In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International
Conference on. IEEE, 461-470.

Annie T. T. Ying, Gail C. Murphy, Raymond T. Ng, and Mark Chu-Carroll. 2004.
Predicting Source Code Changes by Mining Change History. IEEE Trans. Software
Eng. 30, 9 (2004), 574-586. https://doi.org/10.1109/TSE.2004.52

Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl.
2005. Mining Version Histories to Guide Software Changes. IEEE Transactions
on Software Engineering 31, 6 (2005), 429-445.

Lijie Zou and Michael W. Godfrey. 2006. An Industrial Case Study of Program Ar-
tifacts Viewed During Maintenance Tasks. In 13th Working Conference on Reverse
Engineering (WCRE 2006), 23-27 October 2006, Benevento, Italy. IEEE Computer
Society, 71-82. https://doi.org/10.1109/WCRE.2006.12

Lijie Zou, Michael W. Godfrey, and Ahmed E. Hassan. 2007. Detecting Interaction
Coupling from Task Interaction Histories. In 15th International Conference on
Program Comprehension (ICPC 2007), June 26-29, 2007, Banff, Alberta, Canada.
IEEE Computer Society, 135-144. https://doi.org/10.1109/ICPC.2007.18

https://doi.org/10.1109/WCRE.2013.6671306
https://doi.org/10.1109/ICSM.2003.1235428
https://doi.org/10.1109/ICSM.2003.1235428
https://doi.org/10.1145/1180875.1180929
https://doi.org/10.1109/TSE.2005.71
https://doi.org/10.1109/WCRE.2009.19
https://doi.org/10.1145/1368088.1368122
https://doi.org/10.1109/TSE.2011.19
https://doi.org/10.1109/TSE.2011.19
https://doi.org/10.1109/VLHCC.2005.32
https://doi.org/10.1109/VLHCC.2005.32
https://doi.org/10.1109/TSE.2010.38
https://doi.org/10.1109/ASE.2008.20
https://doi.org/10.1109/ICSM.1998.738508
https://doi.org/10.1145/2501543.2501550
https://doi.org/10.1109/ICSSP.2012.6225961
https://doi.org/10.1109/COMPSAC.2010.40
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1109/RSSE.2012.6233415
https://doi.org/10.1109/RSSE.2012.6233415
https://doi.org/10.1145/174666.174668
https://doi.org/10.1145/174666.174668
https://doi.org/10.6084/m9.figshare.5346253.v1
https://doi.org/10.1109/ICSM.2013.40
https://doi.org/10.1109/ICSM.2013.40
https://doi.org/10.1109/ICSE.2003.1201223
https://doi.org/10.1145/1368088.1368219
https://doi.org/10.1109/MSR.2010.5463278
https://doi.org/10.1109/ICPC.2009.5090052
https://doi.org/10.1109/ICSM.2005.66
https://doi.org/10.1145/2901739.2901779
https://doi.org/10.1109/TSE.2004.52
https://doi.org/10.1109/WCRE.2006.12
https://doi.org/10.1109/ICPC.2007.18

	Abstract
	1 Introduction
	1.1 Motivating Example

	2 Study Design
	2.1 Research Questions
	2.2 Data Gathering Method
	2.3 Temporal Data Processing

	3 Quantitative Analysis
	4 Qualitative Analysis of Linked Task Pairs
	4.1 Connected Sample Graphs
	4.2 Situations leading to low BiRCP
	4.3 Situations leading to high BiRCP

	5 Qualitative Analysis of Non-Linked Task Pairs
	6 Discussion
	6.1 Threats to validity

	7 Related Work
	8 Conclusions and Outlook
	Acknowledgments

